SAY WHAT?

Accent Classification for Native and Non-Native English Speakers

MSDS2020 Machine Learning Project

The Big 3 Tech Companiesare heavily invested in voice recognition

OK Google, are there any restaurants near me?

OK Google, can I run multiple n_jobs parameters within sklearn Grid Search to make my model run faster???

"

Don't.

Voice is the Future

...why type when you can talk?

TECHNOLOGY

3 Ways the Voice Revolution Is Going to Change Your Life

Be prepared for voice assistants to be everywhere in the future.

in f 🎔

By Ken Sterling Executive vice president, BigSpeak 🍯 @ken_sterling

Accent detection can help fine tune recommendations and improve accuracy of speech predictions

Accent is a better indicator of cultural background

The Dataset

Wildcat Corpus of Native- and Foreign-Accented English

84 Participants

"

Please call Stella. Ask her to bring these things with her from the store: Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop these things into three red bags, and we will go meet her Wednesday at the train station.

The Dataset

Wildcat Corpus of Native- and Foreign-Accented English

84 Participants

"

Please call Stella. Ask her to bring these things with her from the store: Six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a big toy frog for the kids. She can scoop these things into three red bags, and we will go meet her Wednesday at the train station.

The Dataset

Wildcat Corpus of Native- and Foreign-Accented English

84 Participants

72 Data Points ...we'll get to that.

from pydub import AudioSegment

Uhm Kyle, how do you process audio?

from librosa import librosa.display

A peek into one file...

list257/talker463/SC_P_KO_16_EN_01.wav 1.00 0.75 0.50 0.25 Signal = 0.00 -0.25 -0.50 -0.75 -1.0025 5 10 15 20 30 35 0 Time(s)

Let's get rid of those!

Let's get rid of those!

list257/talker463/SC_P_KO_16_EN_01.wav 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 -1.00 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 Time (s)

Slice each file by 100ms intervals, and convert to frequency domain

Time Domain

Frequency Domain

Mel Frequency Cepstral Coefficients (40 bands)

Log-scale conversion of frequencies to match human hearing

CEPSTRAL?

Mel Frequency Cepstral Coefficients (40 bands)

Log-scale conversion of frequencies to match human hearing

SPECTRAL!

Mel Frequency Cepstral Coefficients (40 bands)

Log-scale conversion of frequencies to match human hearing **Cepstral ->** convert from frequency back to time domain.

Confusion Matrix

Precision & Recall

	English	Chinese	Korean
English	325	75	201
Chinese	108	195	162
Korean	113	82	521

	PR	RE
English	0.60	0.54
Chinese	0.55	0.42
Korean	0.59	0.73

Confusion Matrix

Precision & Recall

	English	Chinese	Korean
English	325	75	201
Chinese	108	195	162
Korean	113	82	521

	PR	RE
English	0.60	0.54
Chinese	0.55	0.42
Korean	0.59	0.73

Chinese has the lowest accuracy, possibly because it is similar to Korean.

Confusion Matrix

Precision & Recall

	English	Chinese	Korean
English	325	75	201
Chinese	108	195	162
Korean	113	82	521

	PR	RE
English	0.60	0.54
Chinese	0.55	0.42
Korean	0.59	0.73

Korean English accent is the most predictable

Neural Networks (DenseNet or CNN)

What else can we do?

More data points

Different Preprocessing

Male-Female Split